On the 3-cycle of the logistic map

Cheng Zhang
(Dated: April 17, 2013)
We review a simple derivation of the onset and bifurcation points the 3-cycle of the logistic map.

The logistic map is defined as

$$
z_{n+1}=F\left(z_{n}\right)=r z_{n}\left(1-z_{n}\right)
$$

We want to find the r values that permit a stable 3-cycle, i.e., a solution of $z_{n+3}=z_{n}$, which can sustain a small deviation in the initial z_{0}. The two boundaries r_{0} and r_{1} of the stable window $\left(r_{0}, r_{1}\right)$ are called the onset and bifurcation points, respectively. By a change of variables

$$
\begin{equation*}
x_{n}=r\left(z_{n}-1 / 2\right), R=\left(r^{2}-2 r\right) / 4 \tag{1}
\end{equation*}
$$

we get a simplified map

$$
x_{n+1}=f\left(x_{n}\right)=R-x_{n}{ }^{2} .
$$

The onset and bifurcation points will be solved in terms of R, and the corresponding r values are obtained by (1).

Let a, b and c be the three points in the 3-cycle:

$$
\begin{equation*}
b=f(a), c=f(b), a=f(c) \tag{2}
\end{equation*}
$$

We define the cyclic polynomials $X=a+b+c, X_{k}=$ $a^{k}+b^{k}+c^{k}$ (for $k=2,3$), $Y=a b+b c+c a$, and $Z=a b c$. The equations of X, X_{k}, Y, and Z are more helpful than those of a, b and c in determining the two points of the 3-cycle.

Onset point. From (2), we have $c-b=f(b)-f(a)=$ $-(b+a)(b-a)$; similar, $a-c=-(c+b)(c-b)=(c+$ $b)(b+a)(b-a)$. Now $(b-a)+(c-b)+(a-c)=0$ means

$$
1-(b+a)+(c+b)(b+a)=0
$$

Cycling variables $a \rightarrow b, b \rightarrow c, c \rightarrow a$ twice, and adding up the three versions yields

$$
\begin{equation*}
3-2 X+X^{2}+Y=0 \tag{3}
\end{equation*}
$$

On the other hand, the sum of (2) gives $X=3 R-X_{2}=$ $3 R-X^{2}+2 Y$ (for $X^{2}=X_{2}+2 Y$). Using (3) for Y yields

$$
\begin{equation*}
X^{2}-X+2-R=0 \tag{4}
\end{equation*}
$$

This equation has a real root only if $2-R \leq 1 / 4$. Thus, $R=7 / 4$ (so $r=1+\sqrt{1+4 R}=1+\sqrt{8}$) is the onset point of the only real 3-cycle [1-5].

Bifurcation point. Let us express cyclic polynomials as linear functions of X. Using (3) and (4), we get

$$
\begin{equation*}
Y=X-R-1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{2}=X^{2}-2 Y=3 R-X \tag{6}
\end{equation*}
$$

For X_{3}, we have $a^{3}=R a-a b$ from $b=f(a)$, summing over cyclic versions yields

$$
\begin{equation*}
X_{3}=R X-Y=(R-1) X+R+1 \tag{7}
\end{equation*}
$$

By $X_{3}-3 Z=X\left(X_{2}-Y\right)$ and (4)-(7), we have

$$
\begin{equation*}
Z=-R X+R-1 \tag{8}
\end{equation*}
$$

Now (4) can be rewritten in terms of Z :

$$
\begin{equation*}
R^{3}-2 R^{2}+(1+Z) R+(1+Z)^{2}=0 \tag{9}
\end{equation*}
$$

The composite map $f(f(f(x)))$ is marginally stable at the onset (bifurcation) point, so $\frac{d}{d a} f(f(f(a)))=$ $f^{\prime}(c) f^{\prime}(b) f^{\prime}(a)=+1(-1)$ [1]. As $f^{\prime}(x)=-2 x$, we get

$$
\begin{equation*}
Z=a b c=\mp 1 / 8 \tag{10}
\end{equation*}
$$

At the onset point $Z=-1 / 8$, (9) becomes

$$
(R-7 / 4)\left(R^{2}-R / 4+7 / 16\right)=0
$$

whose real solution $R=7 / 4$ agrees with the previous result. At the bifurcation point $Z=1 / 8$, we have

$$
R^{3}-2 R^{2}+9 R / 8-81 / 64=0
$$

The only real solution is $R=\frac{2}{3}+\frac{1}{4} \sqrt[3]{\frac{1915}{54}+\frac{5}{2} \sqrt{201}}+$ $\frac{1}{4} \sqrt[3]{\frac{1915}{54}-\frac{5}{2} \sqrt{201}}[3,4]$.

Since a, b and c are the distinct roots of

$$
x^{3}-X x^{2}+Y x-Z=0
$$

The discriminant Δ is a square:
$X^{2} Y^{2}-4 Y^{3}-4 X^{3} Z+18 X Y Z-27 Z^{2}=\left(4 X^{2}-6 X+9\right)^{2}$, where we have used (5) and (8), and eliminated R by (4). Thus, as long as X is real [which is true after the onset $R \geq$ $7 / 4$ by (4)], we have $\Delta>0$, and the cycle points are real. (Thank Beiye Feng for suggesting this point).
[1] P. Saha and S. H. Strogatz, The birth of period three, Mathematics Magazine 68, 42-47 (1995).
[2] J. Bechhoefer, The birth of period 3, revisited, Mathematics Magazine 69, 115-118 (1996).
[3] W. B. Gordon, Period three trajectories of the logistic map, Mathematics Magazine 69, 118-120 (1996).
[4] J. Burm, P. Fishback, Period-3 Orbits via Sylvester's Theorem and Resultants, Mathematics Magazine 74, 47-51 (2001).
[5] C. Zhang, Period three begins, Mathematics Magazine 83, 295297 (2010).

